

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Otto 1.2 documentation

Overview

Otto is an HTTP publisher which uses a routes-like syntax to map URLs
to code. It supports object mapping and traversal.

You can use the publisher to write web applications. It was designed
with both small and large applications in mind. We have tried to
incorporate elements of existing publishers to allow diverse and
flexible application patterns while still being in concordance with
the Zen Of Python.

Examples of the routing syntax (the asterisk character matches any
path):

/*
/*/edit
/users/:id
/users/:id/*
/static/*static

The anonymous asterisk character denotes object mapping; this
facilitates an integration between the routing system and application
data which can be expressed as a model graph, e.g. an object database
like ZODB. To learn more about routes, see the reference on
routing.

Why?

To put it plainly, there is nothing new under the sun here. However,
this package exists for two reasons: simplicity and flexibility. The
existing packages in this problem space give you one without the
other.

Simple

The routing syntax is clear and not cluttered with features. You
can’t capture variables with regular expressions. To illustrate this
we take an example from the Routes package:

this is academic:
connect(r'/blog/{year:\d+}/{month:\d+}/{id:\d+}')

We opt for the simple version:

this is usually what you want:
connect('/blog/:year/:month/:name')

Type checking and conversion is done in the controller:

def view_entry(request, year=None, month=None, name=None):
 try:
 year, month = int(year), int(month)
 except TypeError:
 return webob.Response(
 u"This request had errors: %s." % request.url)
 ...

Not all problems can be aptly spelled using the routes
syntax. Here’s an example from the bobo framework which comes
with its own routes-like syntax:

@bobo.query(method='GET')
def get(who='world'):
 ...

@bobo.query(method='POST')
def post(who='world'):
 ...

It looks useful, but what’s wrong with this:

def both(request, who='world'):
 if request.method == 'POST':
 ...
 ...

Most of the time you want to handle the POST data and then
continue with the logic of the GET method. This needn’t be
managed using routes.

And many properties of the HTTP environment require more than just
an equality match.

Flexible

There are essentially two kinds routes: fixed length and variable
length. When you wire up the variable part with an object mapper,
it’s called the hybrid model. This is an optional
abstraction which maps path segments to an object – often used for
hierarchical data like that in a file system or object database.

To illustrate, the following could be a route for a user’s private
files which are served over WebDAV:

/users/:id/*/edit

Example: /users/john/private/darknet.txt

The asterisk matches any number of path segments, then invokes the
object mapper. Because the id match comes before it, this value
will be passed as keyword argument to the constructor:

class Mapper(object):
 def __init__(self, id=None):
 ...

 def resolve(self, path):
 return PlainText(os.path.join(path))

The resolve method gets a path tuple and returns any object; we
use the term context. Route controllers can decide to respond
only to context objects of a certain type:

@route.controller(type=PlainText)
def edit(context, request)
 ...

The type parameter is only valid for routes which use
mapping. The controller does not get the id parameter since it
was passed to the object mapper.

Complex systems can use the object mapper abstraction to integrate
security and other framework into the URL dispatch routine.

How it works

The publisher is given an HTTP environment and returns an HTTP
response. It always returns a response.

When a request comes in, the publisher matches the PATH_INFO
variable with the routing table to find exactly one route and extracts
the match dict. In case no route matches, a 404 Not Found
response is returned. If the route contains an anonymous asterisk, a
context object is resolved from the path represented by the
asterisk using an object mapper – see mapping. In
any case, the publisher invokes the first valid controller, passing
the match dict as keyword arguments.

request ⇾ routing table ⇾ route ⇾ controllers ⇾ controller

There can be several controllers defined for a single route; each will
then specify one or more predicates. Like routes,
controllers are looked up in order of definition. The first valid
controller is used.

Example

This example application exposes all module globals over the open
wire. It returns the Python string representation of the global which
is provided on the path, e.g. http://localhost:8080/math/pi.

#!/usr/bin/env python2.6

import sys
import otto
import webob.exc
import wsgiref.simple_server

class Modules(object):
 """Maps paths to Python modules."""

 def resolve(self, path):
 name = '.'.join(path)
 __import__(name)
 return sys.modules[name]

 def reverse(self, module):
 return module.__name__.split('.')

app = otto.Application(Modules)

@app.connect("/")
def frontpage(request):
 return webob.exc.HTTPForbidden(
 "What? Why did you ask that? What do you "
 "know about my image manipulator?")

@app.connect("/*/:name")
def representation(module, request, name=None):
 value = getattr(module, name)
 return webob.Response(repr(value))

wsgiref.simple_server.make_server('', 8080, app).serve_forever()

Let’s try out this useful application:

http://localhost:8080/

The route that matches this URL is connected to a controller which
raises an HTTP exception (the WebOb library provides exception
classes for standard response status codes) to signal that the request
is forbidden:

403 Forbidden

Access was denied to this resource.

What? Why did you ask that? What do you know about my image
manipulator?

The math library contains the pi symbol:

http://localhost:8080/math/pi

The response body to this request is the Python string representation:

3.1415926535897931

If you are new to the library, the getting started
section begins with the hello world application and ends with the
present example.

License

This software is made available under the BSD license.

Contents

	Getting started

	Mapping
	Traversal

	Security

	FAQ

	Reference
	Routes

	Controllers

	API

	Glossary

Indices and tables

	Search Page

	Glossary

 Copyright 2009, Malthe Borch et. al.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Otto 1.2 documentation

Getting started

An application can be as simple as a Python script. This example will
serve up the hello world application.

#!/usr/bin/env python2.6

import otto
import webob
import wsgiref.simple_server

app = otto.Application()

@app.connect("/")
def hello_world(request):
 return webob.Response(u"Hello world!")

wsgiref.simple_server.make_server('', 8080, app).serve_forever()

Start the application server by running the script from your shell:

$ chmod +x hello_world.py
$./hello_world.py

This serves up the application on http://localhost:8080.

Hello world!

We can extract values from the path using :key notation. This
works on any path segment and returns a unicode string value which is
passed as keyword argument to the controller function.

To continue our example application, we’ll add a route which will
return a personal greeting:

@app.connect("/:name")
def hello_name(request, name=None):
 return webob.Response(u"Hello %s!" % name.capitalize())

If we visit http://localhost:8080/otto, we get:

Hello Otto!

The hello_name variable now refers to the route (since the
function was decorated using app.connect). We can get to the
controller by using its bind method:

controller = hello_name.bind()
print controller(None, name=u"Otto")

As expected, this calls the controller and prints the greeting:

200 OK
Content-Type: text/html; charset=UTF-8
Content-Length: 11

Hello Otto!

Given a route, we can ask for a path. If the route keyword matching,
those keywords must be passed in as well:

print hello_name.path(name=u"Otto")

Routes can include the asterisk character to match any number of path
segments in a non-greedy way. The path is passed to the object
mapper’s resolve method [1] and the result is passed to the
controller as the first argument.

The following example exposes the module globals of the Python process
on the open wire (responses are given by the representation string of
the object):

import sys

class Modules(object):
 """Maps paths to Python modules."""

 def resolve(self, path):
 name = '.'.join(path)
 __import__(name)
 return sys.modules[name]

 def reverse(self, module):
 return module.__name__.split('.')

app = otto.Application(Modules)
route = app.connect("/repr/*/:name")

@route.controller
def expose(module, request, name=None):
 obj = getattr(module, name)
 return webob.Response(repr(obj))

If we visit http://localhost:8080/repr/math/pi, we get:

3.1415926535897931

We can ask the route to generate a path given a dictionary which
matches the route’s match dict expectations, and in this case, a
context for the mapper.

To separate out route paths from library code (such that library
needn’t be explicitly aware of routing configuration):

import math
print expose.path(math, name=u"pi")

We can define controllers by the type of the object returned by the
resolver.

index = app.connect("/docs/*")

@index.controller(type=str)
def doc(module, request):
 return webob.Response(unicode(module.__doc__))

If we visit http://localhost:8080/docs/hotshot/stats we get:

Statistics analyzer for HotShot.

	[1]	An example of such a resolver is a function which descends “down” a graph of model objects in order to find a context, using e.g. __getitem__. Traversal is good for hierarchical data, for instance that of an object database or a file system.

This concludes the introduction. See frequently asked questions for solutions to common problems.

 Copyright 2009, Malthe Borch et. al.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Otto 1.2 documentation

Mapping

The publisher comes with support for object mapping; this is a class
or instance on the form:

class Mapper(object):
 def resolve(self, path):
 """Return context given the path tuple."""

 def reverse(self, context):
 """Return path or path tuple."""

A mapper may be provided for a particular route (or routes), or set as
the default mapper by passing it to the publisher on instantiation.

It is only used on routes that include an anonymous asterisk, e.g.:

/static/*

The reverse method is optional; only if it’s implemented is the
path method available on the route.

Traversal

Object mapping can be used to implement traversal. This is a common
operation in object databases where path segments are resolved by
calling transitively calling the _getitem__ method of the
traversed objects to get the next item.

 Copyright 2009, Malthe Borch et. al.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Otto 1.2 documentation

Security

There is no security model built into the publisher as such;
applications should return instances of the exception response classes
from the WebOb library (on Python 2.5+ raise may be used):

@app.connect("/")
def controller(request):
 if 'REMOTE_USER' not in request.environ:
 return webob.exc.HTTPForbidden("Server not accessible.")
 return webob.Response(u"Welcome, %s!" % request.environ['REMOTE_USER'])

If we browse to http://localhost:8080/ we get:

403 Forbidden

Access was denied to this resource.

Server not accessible.

 Copyright 2009, Malthe Borch et. al.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Otto 1.2 documentation

FAQ

How do I set up virtual hosting?

The publisher does not come with built-in support for virtual
hosting setups. You can use paste.urlmap to host your
application at some subpath. This will set the SCRIPT_NAME
variable to the subpath and pass on the remaining path as the
PATH_INFO.

For URL generation, you need to establish your application URL
manually; the paths obtained using the path method of a route
come after the application URL, e.g.:

absolute_url = application_url + route.path(...)

The application_url attribute of the WebOb request object
returns the host including the script name. It never ends in a
trailing slash.

How do I control what the routes match?

It is not advertised, but the routes syntax allows for regular
expression usage. Some examples:

To match all URLs which ends in .txt we use positive
look-ahead:

/some/path/(?=.+\.txt)*

Instead of +, we can use *; the asterisk character must be
escaped in this context (else it will be interpreted by the route
compiler).

We can use look-ahead assertions (both positive or negative) on the
match dict segments too. The following matches only keys consisting
of lowercase characters:

/keys/(?=[a-z]+):key

In general, these assertions are discouraged. It’s usually better to
inform the user that something was unexpected than return a 404
Not Found (which will be the response if no route matches).

How do I implement a REST interface?

There is no inherent support for the REQUEST_METHOD header which
is used in the REST protocol.

Applications should define their own logic, e.g.:

class Application(otto.Application):
 def __init__(self):
 super(Application, self).__init__()

 @self.connect("/rest")
 def controller(request):
 try:
 handler = getattr(self, request.method)
 except AttributeError:
 raise webob.HTTPBadRequest(
 u"Unable to handle method: %s." % request.method)
 return handler(request)

 def GET(self, request):
 ...

 def PUT(self, request):
 ...

It was discussed whether to add controller predicates that make it
possible to define a controller for a particular request method, but
in practice, it turns out that there’s a good bit of commonality
between the controllers for different request methods (and likely
this holds true for other properties of the HTTP environment).

In general it is also difficult to devise a syntax for predicates
that test against the HTTP environment. For instance, the request
type (accept) value must be tested part by part, in order, and not
as an exact match.

 Copyright 2009, Malthe Borch et. al.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Otto 1.2 documentation

Reference

Routes

Match dictionary

Expressions on the form :key match any string and passes the
argument by name onto the controller. Examples:

/search/:term
/:category/:id

Match keys must be valid Python variable names.

Note that all values are returned as unquoted unicode strings.

Asterix

The asterisk character "*" matches any number of path segments
(non-greedy). Its value is always a tuple of unquoted path segments.

There are two modes of operation. If the asterisk is immediately
followed by a Python identifier, it will available from the match
dictionary.

An anonymous asterisk invokes the object mapper.

Examples of routes which use the asterisk:

/*
/*path
/*/:version
/documents/*

It is invalid to use more than one asterisk in a route path. Note
that the asterisk may be escaped using the backslash character,
e.g. *.

Object mapping

An object mapper can be defined either on the publisher/application
or set on individual routes.

It’s function is to map paths to objects and vice-versa.

To invoke the object mapper, routes must include an anonymous
asterisk.

Trailing slash

These URLs often indicate a container-like object. Although the two
spellings are fungible in the eyes of a web browser, applications
should not allow two same documents be returned from different URLs
(for both caching and SEO reasons). One variant should redirect to
the other – 301 Redirect.

The router comes with support for such redirection. We can
demonstrate it with a trivial example:

@app.connect("/")
def controler(request):
 return webob.Response(u"Hello world!")

If we visit the application without a trailing slash,
e.g. http://localhost, we should get redirected to the URL that
does end in a trailing slash:

301 Moved Permanently
Content-Type: text/html; charset=UTF-8
Content-Length: 0
location: http://localhost/

The browser will follow the redirect to http://localhost/:

200 OK
Content-Type: text/html; charset=UTF-8
Content-Length: 12

Hello world!

Path generation

The path method of the route object returns a path given keyword
arguments. If object mapping is used on the route, the path segment
tuple should be provided either as the first positional argument
(for an unnamed asterisk), or by keyword argument.

Note that for asterisk arguments, either a path segment tuple or
string may be provided.

All values should be unicode. The result of the path method is
always a quoted string.

Controllers

Type

The type parameter may be used to define a controller which is
only available for a particular type. It’s only available for routes
which use the asterisk character. Example:

@index.controller('/', type=Document)
def view(context, request):
 ...

API

	
class otto.Application(mapper=None)

	Bases: otto.publisher.Publisher

WSGI-Application.

This class adds a WSGI application interface to the HTTP
publisher. The publish method can be overriden to intercept
errors (the HTTP exception classes are provided by WebOb).

	
__call__(environ, start_response)

	WSGI application callable.

	
publish(environ)

	Return response for request given by environ.

	
class otto.Publisher(mapper=None)

	HTTP publisher.

The mapper argument is optional; if provided, it will be
used as the default mapper.

Route definitions are added using the route method. It takes
an optional mapper argument which is then used in place of
the default value.

	
__init__(mapper=None)

	The optional mapper argument specifies the default
route mapper.

	
connect(path, controller=None, mapper=None)

	Use this method to add routes.

	
match(path)

	Match path with routing table and return route controller.

	
class otto.Router

	Interface to the routing engine.

	
__call__(path)

	Returns an iterator which yields route matches.

	
connect(route)

	Use this method to add routes.

	
class otto.Route(path)

	
	
__init__(path)

	Create route given by path.

	
match(path)

	Match the path against the route. Returns a match
dictionary or None.

	
path(**matchdict)

	Generate path given **matchdict.

	
class otto.publisher.Dispatcher(path, controller=None, mapper=None)

	Bases: otto.router.Route

Route which integrates with publisher.

	
__init__(path, controller=None, mapper=None)

	

	
bind(type=None)

	Return controller; if type is specified, use adaptation
on the type hierarchy.

	
controller(controller=None, type=None)

	Register controller for this route; if type is
provided, the controller is used only for objects that contain
this type in its class hierarchy.

	
path(context=None, **matchdict)

	Generate route path. When traversal is used, context
must be provided (usually as first positional argument).

 Copyright 2009, Malthe Borch et. al.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Otto 1.2 documentation

Glossary

	Context

	This term is often used about an object which is retrieved using
hierarchical traversal down an object graph.

	Hybrid model

	Using a combination of routes and object mapping.

	Match dict

	This dictionary contains keyword arguments extracted from the
request path using the route definition (an asterisk or colon
followed by a keyword).

	WebDAV

	Web-based Distributed Authoring and Versioning, or WebDAV, is a
set of extensions to HTTP that allows computer-users to edit and
manage files collaboratively on remote servers.

	Zen Of Python

	Long time Pythoneer Tim Peters succinctly channels the
BDFL’s guiding principles [http://www.python.org/dev/peps/pep-0020/] for Python’s design
into 20 aphorisms, only 19 of which have been written down.

 Copyright 2009, Malthe Borch et. al.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	Otto 1.2 documentation

 Python Module Index

 o

 			

 		
 o	

 	[image: -]
 	
 otto	

 	
 	
 otto.publisher	

 Copyright 2009, Malthe Borch et. al.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	Otto 1.2 documentation

Index

 _
 | A
 | B
 | C
 | D
 | H
 | M
 | O
 | P
 | R
 | W
 | Z

_

 	

 	__call__() (otto.Application method)

 	

 	(otto.Router method)

 	

 	__init__() (otto.Publisher method)

 	

 	(otto.Route method)

 	(otto.publisher.Dispatcher method)

A

 	

 	Application (class in otto)

B

 	

 	bind() (otto.publisher.Dispatcher method)

C

 	

 	connect() (otto.Publisher method)

 	

 	(otto.Router method)

 	Context

 	

 	controller() (otto.publisher.Dispatcher method)

D

 	

 	Dispatcher (class in otto.publisher)

H

 	

 	Hybrid model

M

 	

 	Match dict

 	

 	match() (otto.Publisher method)

 	

 	(otto.Route method)

O

 	

 	otto (module)

 	

 	otto.publisher (module)

P

 	

 	path() (otto.publisher.Dispatcher method)

 	

 	(otto.Route method)

 	publish() (otto.Application method)

 	

 	Publisher (class in otto)

R

 	

 	Route (class in otto)

 	

 	Router (class in otto)

W

 	

 	WebDAV

Z

 	

 	Zen Of Python

 Copyright 2009, Malthe Borch et. al.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Otto 1.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2009, Malthe Borch et. al.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/down.png

_static/comment.png

readme.html

 Navigation

 		
 index

 		
 modules |

 		Otto 1.2 documentation »

Overview

Otto is an HTTP publisher which uses a routes-like syntax to map URLs
to code. It supports object mapping and traversal.

You can use the publisher to write web applications. It was designed
with both small and large applications in mind. We have tried to
incorporate elements of existing publishers to allow diverse and
flexible application patterns while still being in concordance with
the Zen Of Python.

Examples of the routing syntax (the asterisk character matches any
path):

/*
/*/edit
/users/:id
/users/:id/*
/static/*static

The anonymous asterisk character denotes object mapping; this
facilitates an integration between the routing system and application
data which can be expressed as a model graph, e.g. an object database
like ZODB. To learn more about routes, see the reference on
routing.

Why?

To put it plainly, there is nothing new under the sun here. However,
this package exists for two reasons: simplicity and flexibility. The
existing packages in this problem space give you one without the
other.

Simple

The routing syntax is clear and not cluttered with features. You
can’t capture variables with regular expressions. To illustrate this
we take an example from the Routes package:

this is academic:
connect(r'/blog/{year:\d+}/{month:\d+}/{id:\d+}')

We opt for the simple version:

this is usually what you want:
connect('/blog/:year/:month/:name')

Type checking and conversion is done in the controller:

def view_entry(request, year=None, month=None, name=None):
 try:
 year, month = int(year), int(month)
 except TypeError:
 return webob.Response(
 u"This request had errors: %s." % request.url)
 ...

Not all problems can be aptly spelled using the routes
syntax. Here’s an example from the bobo framework which comes
with its own routes-like syntax:

@bobo.query(method='GET')
def get(who='world'):
 ...

@bobo.query(method='POST')
def post(who='world'):
 ...

It looks useful, but what’s wrong with this:

def both(request, who='world'):
 if request.method == 'POST':
 ...
 ...

Most of the time you want to handle the POST data and then
continue with the logic of the GET method. This needn’t be
managed using routes.

And many properties of the HTTP environment require more than just
an equality match.

Flexible

There are essentially two kinds routes: fixed length and variable
length. When you wire up the variable part with an object mapper,
it’s called the hybrid model. This is an optional
abstraction which maps path segments to an object – often used for
hierarchical data like that in a file system or object database.

To illustrate, the following could be a route for a user’s private
files which are served over WebDAV:

/users/:id/*/edit

Example: /users/john/private/darknet.txt

The asterisk matches any number of path segments, then invokes the
object mapper. Because the id match comes before it, this value
will be passed as keyword argument to the constructor:

class Mapper(object):
 def __init__(self, id=None):
 ...

 def resolve(self, path):
 return PlainText(os.path.join(path))

The resolve method gets a path tuple and returns any object; we
use the term context. Route controllers can decide to respond
only to context objects of a certain type:

@route.controller(type=PlainText)
def edit(context, request)
 ...

The type parameter is only valid for routes which use
mapping. The controller does not get the id parameter since it
was passed to the object mapper.

Complex systems can use the object mapper abstraction to integrate
security and other framework into the URL dispatch routine.

How it works

The publisher is given an HTTP environment and returns an HTTP
response. It always returns a response.

When a request comes in, the publisher matches the PATH_INFO
variable with the routing table to find exactly one route and extracts
the match dict. In case no route matches, a 404 Not Found
response is returned. If the route contains an anonymous asterisk, a
context object is resolved from the path represented by the
asterisk using an object mapper – see mapping. In
any case, the publisher invokes the first valid controller, passing
the match dict as keyword arguments.

request ⇾ routing table ⇾ route ⇾ controllers ⇾ controller

There can be several controllers defined for a single route; each will
then specify one or more predicates. Like routes,
controllers are looked up in order of definition. The first valid
controller is used.

Example

This example application exposes all module globals over the open
wire. It returns the Python string representation of the global which
is provided on the path, e.g. http://localhost:8080/math/pi.

#!/usr/bin/env python2.6

import sys
import otto
import webob.exc
import wsgiref.simple_server

class Modules(object):
 """Maps paths to Python modules."""

 def resolve(self, path):
 name = '.'.join(path)
 __import__(name)
 return sys.modules[name]

 def reverse(self, module):
 return module.__name__.split('.')

app = otto.Application(Modules)

@app.connect("/")
def frontpage(request):
 return webob.exc.HTTPForbidden(
 "What? Why did you ask that? What do you "
 "know about my image manipulator?")

@app.connect("/*/:name")
def representation(module, request, name=None):
 value = getattr(module, name)
 return webob.Response(repr(value))

wsgiref.simple_server.make_server('', 8080, app).serve_forever()

Let’s try out this useful application:

http://localhost:8080/

The route that matches this URL is connected to a controller which
raises an HTTP exception (the WebOb library provides exception
classes for standard response status codes) to signal that the request
is forbidden:

403 Forbidden

Access was denied to this resource.

What? Why did you ask that? What do you know about my image
manipulator?

The math library contains the pi symbol:

http://localhost:8080/math/pi

The response body to this request is the Python string representation:

3.1415926535897931

If you are new to the library, the getting started
section begins with the hello world application and ends with the
present example.

License

This software is made available under the BSD license.

 © Copyright 2009, Malthe Borch et. al.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

